4768

June 2012

Question		Answer		Guidance			
1	(i)	A paired sample is used in this context in order to eliminate any effects due to the surfaces used.	E1 [1]	Must refer to (differences between) surfaces.			
1	(ii)	A <i>t</i> test might be used since the sample is small and the population variance is not known (it must be estimated from the data). Must assume: Normality of population of <u>differences</u> .	E1 E1 B1 B1 [4]	Allow use of " σ ", otherwise insist on "population". Allow "underlying" or "distribution" to imply "population".			
1	(iii)	$H_0: \mu_D = 0$ $H_1: \mu_D > 0$	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_B - \mu_A$ etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar. unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.			
		Where μ_D is the (population) mean reduction/difference in drying time. <u>MUST</u> be PAIRED COMPARISON <i>t</i> test. Differences (reductions) (before – after) are: 0.7 0.7 0.2 -0.3 0.8 -0.1 0.3 -0.1 0.1 0.5	B1	 For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after – before" if consistent with alternatives above. 			
		$\overline{x} = 0.28 s_{n-1} = 0.3852(84) (s_{n-1}^{2} = 0.1484(44))$ Test statistic is $\frac{0.28 - 0}{\frac{0.3853}{\sqrt{10}}}$	B1 M1	Do not allow $s_n = 0.3655 (s_n^2 = 0.1336)$ Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $0 + (c's 1.833) \times \frac{0.3853}{\sqrt{10}}$ (= 0.2233) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's 1.833) \times \frac{0.3853}{\sqrt{10}}$			
		= 2.298. Refer to <i>t</i> ₉ . Single-tailed 5% point is 1.833. Significant. Seems mean drying time has fallen.	A1 M1 A1 A1 A1 [9]	(= 0.0566) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Require 3/4 sf; condone up to 6. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong. $P(t > 2.298) = 0.02357$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. "Non-assertive" conclusion in context to include "on average" oe.			

G	Question		Answer		Guidance
1	(iv)		CI is given by $0.28 \pm 2.262 \times \frac{0.3853}{\sqrt{10}}$	M1 B1 M1	Allow c's \overline{x} . Allow c's s_{n-1} .
			= 0.28 ± 0.2756 = (0.0044, 0.5556)	A1	c.a.o. Must be expressed as an interval. Require $3/4$ dp; condone 5. If the final answer is centred on a negative sample mean then do not award the final A mark. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1 B0 M1 A0. Recovery to t_9 is OK.
2	(a)	(i)	For example, need to take a sample because the population might be too large for it to be sensible to take a complete census. Because the sampling process might be destructive.	E1 E1	Reward 1 mark each for any two distinct, sensible points.
		<i></i>		[2]	
2	(a)	(ii)	For example Sample should be unbiased.	E1	Reward 1 mark each for any two distinct, sensible points that the sample/data should be fit for purpose.
			Sample should be representative (of the population).	E1 [2]	Further examples include: data should not be distorted by the act of sampling; data should be relevant.
2	(a)	(iii)	A random sample enables proper statistical inference to be undertaken because we know the probability basis on which it has been selected	E2 [2]	Award E2, 1, 0 depending on the quality of response.
2	(b)	(i)	A Wilcoxon signed rank test might be used when nothing is known about the distribution of the background population. Must assume symmetry (about the median).	E1 E1	Do not allow "sample", or "data" unless it clearly refers to the population.
				[2]	Do not allow if "Normality" forms part of the assumption.

⁴⁷⁶⁸

PMT

Mark Scheme

June 20)12
---------	-----

C	Questi	on	Answer		Guidance		
2			B1	Both. Accept hypotheses in words.			
			where m is the population median	B1	Adequate definition of <i>m</i> to include "population".		
			Speeds –28.7 Rank of diff				
			32.0 3.3 8				
			29.1 0.4 3				
			26.1 -2.6 6				
			35.2 6.5 12	M1	for subtracting 28.7.		
			34.4 5.7 11	101 1	for subfracting 28.7.		
			$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	for ranks.		
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1	ft if ranks wrong.		
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		If candidate has tied ranks then penalise A0 here but ft from here.		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
			28.2 -0.5 4				
			31.9 3.2 7				
			$W_{-} = 1 + 2 + 4 + 5 + 6 = 18$	B1	$(W_{+} = 3 + 7 + 8 + 9 + 10 + 11 + 12 = 60)$		
			Refer to Wilcoxon single sample tables for $n = 12$.	M1	No ft from here if wrong.		
			Lower 5% point is 17 (or upper is 61 if 60 used).	A1	ie a 1-tail test. No ft from here if wrong.		
			Result is not significant.	A1	ft only c's test statistic.		
			No evidence to suggest that the median speed has increased.	A1	ft only c's test statistic. "Non-assertive" conclusion in context to include		
			increased.	[10]	"on average" oe.		
3			$S \sim N(11.07, 2.36^2)$ $C \sim N(57.33, 8.76^2)$		When a candidate's answers suggest that (s)he appears to have		
			$R \sim N(24.23, 3.75^2)$		neglected to use the difference columns of the Normal		
			P(10 - 0 - 12)		distribution tables, penalise the first occurrence only.		
	(i)		P(10 < S < 13)				
			$= P\left(\frac{10 - 11.07}{2.36} < Z < \frac{13 - 11.07}{2.36}\right)$	M1	For standardising. Award once, here or elsewhere.		
			= P(-0.4534 < Z < 0.8178)	A1			
			= 0.7931 - (1 - 0.6748)				
			= 0.4679	A1	Cao Accept 0.468(0), 0.4681, 0.4682, but not 0.4683.		
				[3]			

June	2012	
------	------	--

Question		Answer	Marks	Guidance
3	(ii)	Want $P(R > S + 10)$ i.e. $P(R - S > 10)$	M1	Allow $S - R$ provided subsequent work is consistent.
		$R - S \sim N(24.23 - 11.07 = 13.16,$	B1	Mean.
		$3.75^2 + 2.36^2 = 19.6321)$	B1	Variance. Accept sd = $\sqrt{19.6321} = 4.4308$
		$P(\text{this} > 10) = P(Z > \frac{10 - 13.16}{\sqrt{19.6321}} = -0.7132)$		
		= 0.7621	A1	cao
			[4]	
3	(iii)	Want $P(S + R > \frac{2}{3}C)$ i.e. $P(S + R - \frac{2}{3}C > 0)$	M1	Allow $\frac{2}{3}L - (S + R)$ provided subsequent work is consistent.
		$S + R - \frac{2}{3}C \sim N(11.07 + 24.23 - \frac{2}{3} \times 57.33 = -2.92,$	B1	Mean
		$2.36^2 + 3.75^2 + (\frac{2}{3} \times 8.76)^2 = 53.7377)$	B1	Variance. Accept sd = $\sqrt{53.7377} = 7.3306$
		$P(\text{this} > 0) = P(Z > \frac{0 - (-2.92)}{\sqrt{53.7377}} = 0.3983)$		
		= 1 - 0.6548 = 0.3452	A1	cao
			[4]	
3	(iv)	$\overline{x} = 98.484$, $s_{n-1} = 10.1594$	B1	Do not allow $s_n = 9.7269$.
		CI is given by $98.484 \pm$	M1	ft c's $\overline{x} \pm$.
		2.201	B1	From t_{11} .
		$\times \frac{10.1594}{\sqrt{12}}$	M1	ft c's s_{n-1} .
		$\overline{\sqrt{12}}$		
		$= 98.484 \pm 6.455 = (92.03, 104.94)$	A1	cao Must be expressed as an interval.
				Require 1 or 2 dp; condone 3dp.
			[5]	
3	(v)	Normality is unlikely to be reasonable – times could	E1	Discussion required. Accept any reasonable point.
		well be (positively) skewed.		Accept "reasonable" provided an adequate explanation is given.
		Independence is unlikely to be reasonable $-$ e.g. a	E1	Discussion required. Accept any reasonable point.
		competitor who is fast in one stage may well be fast		This is independence between stages for a particular competitor,
		in all three.	[0]	not between competitors.
			[2]	

4768

June 2012	J	ur	۱e	20	1	2
-----------	---	----	----	----	---	---

Question		Answer	M	arks	Guidance					
4	(i)	H_0 : The model for the number of callouts fits the da H_1 : The model for the number of callouts does not a the data.		B1 B1	Do not allow "Data fit the model" o.e for either hypothesis.			the model" o.e for either hypothesis.		
		Obs'd frequency 145 79	os'd frequency 145 79 22		5	3	0			
			25.190	5.0)38 (0.756	0.101			
		Merge last 3 cells. Obs 9 Exp 5.895 $X^2 = 0.1824 + 0.2939 + 0.4040 + 1.6355$		M1 M1	Calcul	lation o	f X^2 .			
		= 2.515(8)		A1	Cao R	Require	3/4 sf; coi	ndone up to 6.		
Refer to χ^2_2 . M1								(1s - 2) from wrongly grouped table and ft. ng. P($X^2 > 2.5158$) = 0.2842.		
		Upper 5% point is 5.991.		A1			ere if wror			
		Not significant.		A1	ft only c's test statistic.					
		Suggests it is reasonable to suppose that the model		A1			"Non-assertive" conclusion in words (+context).			
		fits the data.		[9]	Do no	model" o.e.				
4	(ii)	Mean = $5/3$ \therefore $\lambda = 0.6$		B1						
_				[1]	G		1 . 1 1			
4	(iii)	$F(t) = \int_0^t 0.6e^{-0.6x} dx$		M1	Correct integral with limits (which may be implied subsequently). Allow use of " $+ c$ " accompanied by a valid attempt to evaluate it. Correctly integrated.					
		$= \left[-e^{-0.6x} \right]_0^t$		A1	Correc	ctly inte	egrated.			
								ated correctly. Accept unsimplified form. in terms of λ then allow max M1A1A0.		
				[3]	In that answer is given in terms of χ then allow max with the					
4	(iv)	P(T > 1) = 1 - F(1)		M1	ft c's $F(t)$. cao Allow any exact form of the correct answer.					
		$= 1 - \left(1 - e^{-0.6}\right) = 0.5488$		A1						
		· · · ·		[2]						
4	(v)	$F(m) = \frac{1}{2} \qquad \therefore 1 - e^{-0.6m} = \frac{1}{2}$ $\therefore e^{-0.6m} = \frac{1}{2} \qquad \therefore -0.6m = -\ln 2 \qquad \therefore m = \frac{\ln 2}{0.6}$]	M1						
		$\therefore e^{-0.6m} = \frac{1}{2} \qquad \therefore -0.6m = -\ln 2 \qquad \therefore m = \frac{\ln 2}{0.6}$	1	M1	Convi	incing a	ttempt to	rearrange to " $m = \dots$ ", to include use of logs.		
		m = 1.155 (days)		A1	Cao ol Requir	In the correct $F(t)$. Must be evaluated. one 5.				
				[3]	<u>^</u>					