Question		Answer	Marks	Guidance
1	(i)	A paired sample is used in this context in order to eliminate any effects due to the surfaces used.	E1 [1]	Must refer to (differences between) surfaces.
1	(ii)	A t test might be used since the sample is small and ... the population variance is not known (it must be estimated from the data). Must assume: Normality of population of differences.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [4] } \end{aligned}$	Allow use of " σ ", otherwise insist on "population". Allow "underlying" or "distribution" to imply "population".
1	(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction/difference in drying time. MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are: $\begin{array}{cccccccccc} 0.7 & 0.7 & 0.2 & -0.3 & 0.8 & -0.1 & 0.3 & -0.1 & 0.1 & 0.5 \\ \bar{x}=0.28 & s_{n-1}=0.3852(84) & \left(s_{n-1}{ }^{2}=0.1484(44)\right) \end{array}$ Test statistic is $\frac{0.28-0}{\frac{0.3853}{\sqrt{ } 10}}$ $=2.298$ Refer to t_{9}. Single-tailed 5\% point is 1.833 . Significant. Seems mean drying time has fallen.	B1 B1 B1 M1 A1 M1 A1 A1 A1 [9]	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{B}-\mu_{A}$ etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar. unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after - before" if consistent with alternatives above. Do not allow $s_{\mathrm{n}}=0.3655\left(s_{n}{ }^{2}=0.1336\right)$ Allow c's \bar{X} and/or s_{n-1}. Allow alternative: $0+(\mathrm{c}$ s 1.833) \times $\frac{0.3853}{\sqrt{10}}(=0.2233)$ for subsequent comparison with \bar{x}. $\left(\right.$ Or $\bar{x}-(c$'s 1.833$) \times \frac{0.3853}{\sqrt{10}}$ (= 0.0566) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Require $3 / 4 \mathrm{sf}$; condone up to 6. Use of $0-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. $\mathrm{P}(t>2.298)=0.02357$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. "Non-assertive" conclusion in context to include "on average" oe.

Question			Answer	Marks	Guidance
1	(iv)		$\begin{aligned} & \text { CI is given by } 0.28 \pm \\ & \qquad \begin{array}{l} 2.262 \\ \quad \times \frac{0.3853}{\sqrt{10}} \\ \quad=0.28 \pm 0.2756=(0.0044,0.5556) \end{array} \end{aligned}$	M1 B1 M1 A1 [4]	Allow c's \bar{x}. Allow c's s_{n-1}. c.a.o. Must be expressed as an interval. Require $3 / 4 \mathrm{dp}$; condone 5 . If the final answer is centred on a negative sample mean then do not award the final A mark. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1 B0 M1 A0. Recovery to t_{9} is OK .
2	(a)	(i)	For example, need to take a sample because the population might be too large for it to be sensible to take a complete census. Because the sampling process might be destructive.	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points.
2	(a)	(ii)	For example Sample should be unbiased. Sample should be representative (of the population).	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points that the sample/data should be fit for purpose. Further examples include: data should not be distorted by the act of sampling; data should be relevant.
2	(a)	(iii)	A random sample ... enables proper statistical inference to be undertaken because we know the probability basis on which it has been selected	E2 [2]	Award E2, 1, 0 depending on the quality of response.
2	(b)	(i)	A Wilcoxon signed rank test might be used when nothing is known about the distribution of the background population. Must assume symmetry (about the median).	E1 E1 [2]	Do not allow "sample", or "data" unless it clearly refers to the population. Do not allow if "Normality" forms part of the assumption.

Question			Answer			Marks	Guidance
2	(b)	(ii)				$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Both. Accept hypotheses in words. Adequate definition of m to include "population".
			where m is the population median				
			32.0	3.3	8		
			29.1	0.4	3		
			26.1	-2.6	6		
			35.2	6.5	12		
			34.4	5.7	11	M1	for subtracting 28.7.
			28.6	-0.1	1	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	for ranks. ft if ranks wrong. If candidate has tied ranks then penalise A0 here but ft from here.
			32.3	3.6	9		
			28.5	-0.2	2		
			27.0	-1.7	5		
			33.3	4.6	10		
			28.2	-0.5	4		
			31.9	3.2	7		
			$W_{-}=1+2+4+5+6=18$			B1	$\left(W_{+}=3+7+8+9+10+11+12=60\right)$
						M1	No ft from here if wrong.
			Refer to Wilcoxon single sample tables for $n=12$. Lower 5% point is 17 (or upper is 61 if 60 used).			A1	ie a 1-tail test. No ft from here if wrong.
			Result is not significant. No evidence to suggest that the median speed has			A1	ft only c's test statistic.
			increased.			A1 [10]	ft only c's test statistic. "Non-assertive" conclusion in context to include "on average" oe.
3	(i)		$\begin{aligned} & S \sim \mathrm{~N}\left(11.07,2.36^{2}\right) \quad C \sim \mathrm{~N}\left(57.33,8.76^{2}\right) \\ & R \sim \mathrm{~N}\left(24.23,3.75^{2}\right) \end{aligned}$				When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.
			$\mathrm{P}(10<S<13)$			M1	
			$=\mathrm{P}\left(\frac{10-11.07}{2.36}<Z<\frac{13-11.07}{2.36}\right)$				For standardising. Award once, here or elsewhere.
			$=\mathrm{P}(-0.4534<\mathrm{Z}<0.8178)$			A1	
			$=0.4679$			$\begin{aligned} & \text { A1 } \\ & \text { [3] } \end{aligned}$	Cao Accept 0.468(0), 0.4681, 0.4682 , but not 0.4683 .

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & \text { Want } \mathrm{P}(R>S+10) \text { i.e. } \mathrm{P}(R-S>10) \\ & R-\mathrm{S} \sim \mathrm{~N}(24.23-11.07=13.16, \\ & \left.\quad 3.75^{2}+2.36^{2}=19.6321\right) \\ & \begin{aligned} \mathrm{P}(\text { this }>10) & =\mathrm{P}\left(\mathrm{Z}>\frac{10-13.16}{\sqrt{19.6321}}=-0.7132\right) \\ & =0.7621 \end{aligned} \end{aligned}$	M1 B1 B1 A1 [4]	Allow $S-R$ provided subsequent work is consistent. Mean. Variance. Accept $s d=\sqrt{ } 19.6321=4.4308 \ldots$ cao
3	(iii)	$\begin{aligned} & \text { Want } \mathrm{P}(S+R>2 / 3 C) \text { i.e. } \mathrm{P}(S+R-2 / 3 C>0) \\ & S+R-2 / 3 C \sim \mathrm{~N}(11.07+24.23-2 / 3 \times 57.33=-2.92, \\ & \left.2.36^{2}+3.75^{2}+(2 / 3 \times 8.76)^{2}=53.7377\right) \\ & \begin{aligned} \mathrm{P}(\text { this }>0) & =\mathrm{P}\left(Z>\frac{0-(-2.92)}{\sqrt{53.7377}}=0.3983\right) \\ \quad & =1-0.6548=0.3452 \end{aligned} \end{aligned}$	M1 B1 B1 A1 [4]	Allow $2 / 3 L-(S+R)$ provided subsequent work is consistent. Mean Variance. Accept $s d=\sqrt{ } 53.7377=7.3306 \ldots$ cao
3	(iv)	$\begin{aligned} & \bar{x}=98.484, s_{n-1}=10.1594 \\ & \text { CI is given by } 98.484 \pm \\ & \quad 2.201 \\ & \quad \times \frac{10.1594}{\sqrt{12}} \\ & \quad=98.484 \pm 6.455=(92.03,104.94) \end{aligned}$	B1 M1 B1 M1 A1 [5]	Do not allow $s_{n}=9.7269$. ft c 's $\bar{x} \pm$. From t_{11}. ft c's s_{n-1}. cao Must be expressed as an interval. Require 1 or 2 dp ; condone 3dp.
3	(v)	Normality is unlikely to be reasonable - times could well be (positively) skewed. Independence is unlikely to be reasonable - e.g. a competitor who is fast in one stage may well be fast in all three.	E1 E1 [2]	Discussion required. Accept any reasonable point. Accept "reasonable" provided an adequate explanation is given. Discussion required. Accept any reasonable point. This is independence between stages for a particular competitor, not between competitors.

